

© 2015 - 2020 MegiQ www.megiq.com Version 3, April 2020

MegiQ VNA

Application Programming Interface

-30

-20

-10

0

1000 1500 2000 2500 3000 3500 4000

MHz

dB

S21 S11 S22

http://www.megiq.com/

 VNA Aplication Programming Interface

© 2015 - 2020 MegiQ www.megiq.com - 2 -

Contents

1 Introduction... 4
2 Legal stuff ... 4
3 API interface ... 4

3.1 Programming model .. 4
3.2 Programming languages ... 4
3.3 Naming conventions .. 5
3.4 Starting the driver .. 5
3.5 Terminating the driver ... 5
3.6 Hardware connection .. 5

4 VNA Software structure ... 6
4.1 VNAMain.. 6
4.2 Measurement ... 7
4.3 TraceSet .. 8
4.4 IQData ... 8
4.5 Session .. 10
4.6 Working with Sessions .. 10
4.7 Measurement configuration and Channels ... 12
4.8 Sweep structure and Traces ... 12
4.9 Parameters .. 13
4.10 Calibrations .. 13
4.11 Event handling ... 14
4.12 Object life cycle .. 14

5 Application Programming ... 15
5.1 A simple VNA test program ... 16

6 API Reference .. 18
6.1 Class mvnaVNAMain .. 18
6.2 Class mvnaApplication .. 22
6.3 Class mvnaVNADevice ... 23
6.4 Class mvnaSession ... 26
6.5 Class mvnaMeasurements .. 28
6.6 Class mvnaMeasurement ... 30
6.7 Class mvnaTraceSet ... 34
6.8 Class mvnaTraces ... 35
6.9 Class mvnaTrace .. 36
6.10 Class mvnaTraceChannels ... 37
6.11 Class mvnaTraceChannel ... 38
6.12 Class mvnaTraceDataSet.. 39
6.13 Class mvnaParameters ... 40
6.14 Class mvnaParameter ... 41
6.15 Class mvnaCalibrations ... 43
6.16 Class mvnaCalibration ... 44
6.17 Class mvnaIQData... 45

6.17.1 Object functions ... 46
6.17.2 Sample value manipulation .. 46
6.17.3 Array arithmetic .. 47
6.17.4 Sample conversion .. 48
6.17.5 Computations ... 48

6.18 Class mvnaIQ .. 49
6.19 Enum mvnaVNAStatus .. 50
6.20 Enum mvnaSweepType .. 50
6.21 Enum mvnaVNAPort.. 50
6.22 Enum mvnaVNADataOptions .. 50

http://www.megiq.com/

 VNA Aplication Programming Interface

© 2015 - 2020 MegiQ www.megiq.com - 3 -

6.23 Enum mvnaVNABiasControl ... 50
6.24 Enum mvnaWindowShowState ... 50
6.25 Enum mvnaColor ... 50
6.26 Enum mvnaLedState ... 50

Revisions

Version Date MiQVNA
version

Description

1 27-9-2015 1.4.007 First API Release

2 26-7-2016 1.5.008 New function ConnectSerial()

3 11-4-2020 1.9.015 Changed MegiQ logo in this file

http://www.megiq.com/

 VNA Aplication Programming Interface

© 2015 - 2020 MegiQ www.megiq.com - 4 -

MegiQ VNA Application Programming Interface

1 Introduction
The MegiQ VNA API offers third party programmers access to all VNA functionality to configure
and perform measurements and access the resulting data for further processing.

The API can be used for programming custom test programs that are typically used in production
test environments.

2 Legal stuff
All information presented in this document is provided as-is, without warranties. MegiQ BV
reserves the right to change the contents without notice.

The information in this document may be used exclusively for MegiQ products. Said information
may not be published or reproduced without permission from MegiQ BV.

3 API interface

3.1 Programming model
The MegiQ VNA API is based on an ActiveX (COM) component that is part of the MiQVNA
program.
In order to use this API, version 1.4.007 or higher of the MiQVNA program is required, unless
noted otherwise.

The main component of the API is the mvnaVNAMain class. This class gives access to functions
and other classes to control the VNA.

Most classes are not-creatable, i.e. one can only get an instance by calling a VNA function that
creates the class. Only the data classes that contain actual measurement data are creatable
because this allows further (arithmetic) manipulation of the data.

Several classes are of a transient nature and the user application should request a reference to a
class only when needed to access up-to-date information, and release it afterwards. This manual
describes which classes are static and can be referenced permanently.

Some classes can raise events that can be handled by the user application. These events are for
signaling changes in status such as connection and measurement status, availability of new data
etc.

3.2 Programming languages
The API interface is accessed through the Windows COM class specification that can be used in
several programming languages. The interface has been used in Visual Basic 6 (VB6), VBA for
Office (Word, Excel etc), VB.Net, LabWindows/CVI and C#.

The driver works in its own thread and some languages need specific measurements to handle
multithreading.

The API is native to VB6 and VBA so the access to objects and other elements is straightforward
and the code does not need to concern itself with multithreading.

http://www.megiq.com/

 VNA Aplication Programming Interface

© 2015 - 2020 MegiQ www.megiq.com - 5 -

C# can import the typelib and expose the functionality. However, it will convert or prefix some
names to avoid C# conflicts with other names. C# also needs to use ‘Delegates’ and other
measures to handle the multithreading.

LabWindows/CVI has a typelib import utility that creates header and code files in plain C. The
access of COM objects in plain C is a bit laborious. Also the multithreading needs to be handled.

The API development kit provides full-featured examples of VB6 and C-Sharp code for accessing
all API functions.

This manual provides examples mostly in VB6 because that is the simplest interface without too
many language distractions. Other languages are very similar.

3.3 Naming conventions
All classes and enumerations are preceded by the ‘mvna’ prefix to avoid interference with the
namespace of other COM components. Events have the ‘evt’ prefix to avoid naming conflicts.

This document often omits the prefix when it is not essential for the context.

3.4 Starting the driver
The VNA API can be accessed by creating an instance of the class mvnaVNAMain. This will start
an instance of the MiQVNA program, with its user screen minimized. If the autoconnect flag in
MiQVNA is on, the program will automatically connect to the first connected VNA it finds in the list
of ports. The application can monitor the VNA Status to determine when a full connection is
established.

3.5 Terminating the driver
The VNA API is terminated by releasing all VNA objects, finishing with the mvnaVNAMain object.
This will disconnect the software from the VNA and close MiQVNA.

3.6 Hardware connection
The MiQVNA driver has an option to open a connection to the VNA automatically (AutoConnect).
If this option is active the test application does not need to handle connection and disconnection, it
just needs to monitor SystemStatus events. This option is on by default. The driver will not Auto
Connect when it is disconnected by software or with the Connect button in the MiQVNA driver, until
the VNA is unplugged and plugged.

Whether AutoConnect is on or off the driver can always use the Connect and Disconnect
functions.

If the VNA is connected to the USB port without having a power supply it will stay in bootloader
mode until power is connected. The application can check for this in software.

http://www.megiq.com/

 VNA Aplication Programming Interface

© 2015 - 2020 MegiQ www.megiq.com - 6 -

Application

VNA Application

VNADevice

VNA device

Measurement

Actual VNA
measurement

PresetSession

Preset measurements

VNAMain

Properties

SystemStatus

Functions

Connect()

Disconnect()

RunCalibration()

RunSweepOnce()

RunSweepContinuously()

StopSweep()

OpenSession()

Events

evtSystemStatus()

evtSweepProgress()

evtMeasurementChange()

evtDataChange()

evtTerminate()

4 VNA Software structure

4.1 VNAMain
The main object is the mvnaVNAMain object that provides access to the VNA.

This class provides functions to control the connection between the VNA and the PC and functions
to control sweeping actions.

It contains these classes:

• Application: provides version and path information of the MiQVNA application and

control of its screen.

• VNADevice: allows control of some VNA hardware functions.

• Measurement: contains the current VNA measurement: configuration, parameters and

data.

• PresetSession: provides access to the pre-configured preset measurements

For example, an application would start with creating a VNAMain class. It can use the

SystemStatus property and event to verify or wait for proper VNA connection. It uses

Measurement to setup a measurement if necessary and then can use RunSweepOnce to

initiate a sweep. At the arrival of the DataChange event it can access the data in

Measurement to check against a template.

http://www.megiq.com/

 VNA Aplication Programming Interface

© 2015 - 2020 MegiQ www.megiq.com - 7 -

Parameters

Collection of
Parameter

TraceSet

Trace data

Calibrations

Collection of
Calibration

Measurement

Properties
Name

DateTime

Key

Dirty

DualCalkit

UseCalibration

PortBias

PortIdleGenerator

Functions

ClearCalibration()

ClearData()

Renormalize()

Events

evtDirty()

evtSetupChange()

evtSettingsChange()

evtCalibrationChange()

evtSweepProgress()

evtIdleSettingsChange()

4.2 Measurement
The Measurement class contains a whole measurement:

• Name and time stamp

• Port/Cycle configuration

• Static and Sweep parameters

• Calibration cycle enumeration

• Calibration data

• Measurement data

It has functions to clear data and renormalize the data.

The classes within a Measurement are:

• TraceSet: contains all calibration and measurement data

• Parameters: all parameters used during the measurement and during idle state.

• Calibrations: enumerates the calibration cycles for the measurement

http://www.megiq.com/

 VNA Aplication Programming Interface

© 2015 - 2020 MegiQ www.megiq.com - 8 -

4.3 TraceSet
The TraceSet contains the measurement data with the following hierarchy:

• Parameters: the static and sweep parameters

• Traces: a set of traces. For simple sweeps there is only 1 trace but for nested sweep

there will be a trace for each of the lowest level sweeps.

• Trace: each lowest level sweep is a Trace and contains a set of Parameters used for this

trace and a set of TraceChannels for each of the measurements S11, S22, S21 etc

• TraceChannel: there is a TraceChannel for each of the S-parameters. It can contain

several IQData data sets for the calibration (CalOpen etc) and an IQData data set with the
normalized measurement data: Return data or Through data.

• IQData: a set of measurement points

• IQ: a measurement point in IQ format

One would access a particular data point value like this:

double QVal = TraceSet.Traces(1).Channels("S11").DataSet("Return").QValue(25);

4.4 IQData
IQData contains an array with (complex) calibration, measurement or derived points. The data is
generally stored as S parameter values although derived values can have another dimension.

Along with the data points IQData also stores an array of ‘parameter’ values that correspond to the
sweep parameter values of the (lowest) sweep parameter. Depending on the sweep configuration,
these are usually frequency values but can be other parameter values like power or bias voltages.

Although IQData provides IQ elements for each measurement point, it actually stores its data in
arrays of I-values and Q-values for computational efficiency. It is recommended to use the array
functions of IQData to access the data points.

IQData also provides a number of arithmetic and math functions that operate on the arrays directly.
This allows cascaded numerical operations with great efficiency.

For example one can calculate the round trip gain S12 * S21 for the whole array like this:

mvnaIQData S21, S12, SRT;

S12 = TraceSet.Traces(1).Channels("S12").DataSet("Through");

S21 = TraceSet.Traces(1).Channels("S21").DataSet("Through");

SRT = S12.Multiply(S21);

double AmpDbVals[];

double PhaseVals[];

SRT.GetAmpPhaseValuesDbDegrees(AmpdBVals, PhaseVals);

http://www.megiq.com/

 VNA Aplication Programming Interface

© 2015 - 2020 MegiQ www.megiq.com - 9 -

TraceSet

Parameters

Collection of
Parameter

Traces

Collection of
Trace

Trace

Properties

TraceNumber

Parameters

Collection of
Parameter

TraceChannels

Collection of
TraceChannel

TraceChannel

Properties
Name

TraceDataSet

Collection of
IQData

IQData

Properties
Name

Size

P/I/Q data arrays

Functions

Get/Set data

Arithmetic

Math

IQ

Properties
IValue

QValue

Functions

Get/Set value

Arithmetic

Math

Trace 1
Trace 2
Etc

S11
S12
Etc

CalOpen
CalShort
...
Return data
Through
data

http://www.megiq.com/

 VNA Aplication Programming Interface

© 2015 - 2020 MegiQ www.megiq.com - 10 -

Session

Properties
FileName

Dirty

Functions
Clear()

SaveSession()

Events

evtDirty()

Measurements

Collection of
Measurement

Measurement

VNA measurement

4.5 Session
A Session is a collection of measurements that can be stored in a session file. Measurements can
be added or deleted through the Measurements collection.

New measurements can not be created directly. The application can take an existing measurement
(either from a Session or the current VNA Measurement) and save it as a new measurement in a
(new) session.

VNAMain contains a Preset Session. That is a session that is loaded at startup of MiQVNA and
contains some preconfigured measurements, without calibration or measurement data.

4.6 Working with Sessions
Sessions can be used to configure and manage measurements:

• The application developer can use the MiQVNA program to create a template session with
one or more preconfigured measurements. For a fixed test setup MiQVNA can be used to
create the calibration data and store this in the measurement.

• The test program can open this Session file and load the measurement into the active VNA
measurement of VNAMain.

• When a measurement is completed the test program can use the measured data to check
against a template, or do other processing.

• If desired for logging, the completed measurement can be added to a new Session. A
number of measurements can be saved into one Session file. The test program has the
option to save only the measurement data or all data including the calibration data.

http://www.megiq.com/

 VNA Aplication Programming Interface

© 2015 - 2020 MegiQ www.megiq.com - 11 -

However, with the calibration data the Session file could to get quite large, so the
measurements could be saved in batches.

The following pseudo code shows how to load a (calibrated) configuration Session, check the
measured S21 gain and log failed items:

At startup:

// Initialize the driver and load a test measurement

VnaMain = new mvnaVNAMain;

ConfigSession = VnaMain.OpenSession("ConfigSessionFile.vns");

VnaMain.Measurement = ConfigSession.ItemByName("GainTest");

// Create an empty log session

LogSession = VnaMain.OpenSession("");

When measurement data arrives:

// Get the data from the TraceSet

S21 = VnaMain.TraceSet.Traces(1).Channels("S21").DataSet("Through");

// Get Gain dB values and check the values

S21.GetAmpValuesDb (AmpValues);

for (i = 0; i < AmpValues.Size; i++)

{

 if (AmpValues[i] < MinimumGain)

 Fail = true;

}

if (Fail)

{

LogSession.Measurements.AddItem(VnaMain.Measurement, "Fail 001",

Now);

}

When the program terminates or there are many measurements in the Session:

LogSession.SaveSession("Failed Items 001", false, mvnaVDO_DATA);

LogSession = VnaMain.OpenSession(""); // Get empty new log session

http://www.megiq.com/

 VNA Aplication Programming Interface

© 2015 - 2020 MegiQ www.megiq.com - 12 -

4.7 Measurement configuration and Channels
The measurement configuration is the specification of the (S) parameters that need to be
measured on the ports. (S11, 2-Port etc). This configuration determines the measurement cycles,
calibrations needed and the resulting sets of data called Channels.

For example, a 2-Port setup results in the Channels S11, S22, S21 and S12:

• S11 and S22 contain reflection / impedance data at the port, as
well as Open/Short/Load calibrations.

• S21 and S12 contain gain / loss data between the ports, as well
as Through and Isolation calibrations.

A 3-port measurement also yields S13 and S23, and using some of the
external bridge configurations can yield S33, S31 and S32.

The API does not provide a way to setup the configuration of a measurement. This can only be
done manually in MiQVNA and saved as a measurement.

4.8 Sweep structure and Traces
It is possible to configure all kinds of parametric sweeps that can involve any of the available
parameters (frequency, power, bias etc).

The most common sweep is the simple Frequency Sweep. The frequency is swept with all other
parameters static. This results in a single Trace in a TraceSet.

MiQVNA makes it possible to configure nested and combined sweeps using multiple parameters.

For example, one can use the sweep on the left to do Frequency sweeps
at different Bias Voltages. The lowest parameter Frequency is the sweep
parameter and above that Voltage is a parametric parameter. Since
Voltage has 3 steps we get 4 Traces each with 181 samples of

Frequency sweep samples (and calibrations).

This sweep can be used to measure the 1dB-
compression point of an amplifier. Here the
Power is swept with 60 steps, along with the
input Attenuator on port 2 to allow for the gain
of the amplifier. This sweep is repeated over 5
Frequencies and thus yields 5 Traces.

http://www.megiq.com/

 VNA Aplication Programming Interface

© 2015 - 2020 MegiQ www.megiq.com - 13 -

The TraceSet holds the collection of the Traces of this measurement, along with all

Parameter settings including the static parameters. The application can use the

Parameter.IsSweep property to determine whether a parameter is static or is swept.

Each Trace also contains a Parameters set used for that Trace. In this parameter set only the

lowest parameter(s) in the sweep is (are) variable (IsSweep = True). The parameters higher in

the sweep definition are static at the current step for the Trace. This value is stored in the
CurrentValue of the parameter.

The Parameters collections do not provide a means to determine the hierarchy of a sweep.

The API does not provide a way to setup the configuration of a sweep. This can only be done
manually in MiQVNA and saved as a measurement.

4.9 Parameters
The settings of a Measurement are controlled by a number of Parameters. A Parameter

contains information about a (physical) property of the measurement. It has a CurrentValue

that is the actual value.

Any Parameter can be involved in a Sweep. It contains sweep settings (StartValue,

StopValue, Steps) to control the sweep.

If a Parameter is static then the CurrentValue applies during measurements. If it is a Sweep

Parameter then the sweep settings apply during measurements.

The CurrentValue also determines the value during Idle state of the VNA.

A Sweep reaches the StopValue after the number of Steps are performed. This means that a

sweep parameter yields one more sample or trace then the number of steps.

These are the Parameters in the Parameters collection:

• VNA_FREQUENCY VNA measurement frequency Hz

• GEN_POWER Generator Power dBm

• DET_ATTENUATION1 Detector 1 input Attenuation dB

• DET_ATTENUATION2 Detector 2 input Attenuation dB

• BIAS_VOLTAGE Bias Voltage V

• BIAS_CURRENT Bias Current A

The parameter values are whole physical SI units or dBs. The Dimension field provides the a

string that can be used as a suffix for display. It is up the application to scale this to human
versions (MHz, mA).

4.10 Calibrations
If a Measurement involves user Calibration the calibration values are provided in the DataSet

of a Channel. Calibrations are device independent S-parameters as they are measured at the

VNA port.

There are two byproducts of a user calibration: CalSource and CalSink. These are the
impedances at the two Calibration Planes that connect to the EUT. They are used in a 2-Port 12-
term normalization.

http://www.megiq.com/

 VNA Aplication Programming Interface

© 2015 - 2020 MegiQ www.megiq.com - 14 -

4.11 Event handling
Some classes raise events to keep the application updated about the status. VNAMain has events
for change in system state and measurement setup, and when new measurement data is
available. A simple application will only need these events.

Measurement provides some more events for settings changes. They may be used for more
elaborate screen updates.

Session provides a Dirty event that indicates if a session contains unsaved information.

4.12 Object life cycle
Most objects can not be created by the test application, they must be acquired from the API.

The main object, VNAMain, is created by the application and (typically) exists during the life of the
application. It’s constituent objects are static objects that stay alive while VNAMain exists.

When a new Measurement is assigned to VNAMain, the contents of this measurement is copied

into the current measurement. This means that a reference to VNAMain.Measurement will stay

valid. However, the Parameters collection and Traceset will be replaced during this

operation.

The Traceset is a copy of the actual measurement data, and a new copy of the measurement

data is created each time a reference to Traceset is requested.

This means that the application should not retain a reference to a Traceset longer than

necessary. When new measurement data is available a new Traceset reference should be
obtained for further data processing.

This also means that if multiple TraceSet operations are done in series, the application should

only request the TraceSet once. Otherwise, a complete dataset copy is made each time the
traceset is accessed. For example, the second of these two examples is more efficient:

Example 1:
Dim S11 As mvnaIQData

Dim S22 As mvnaIQData

' Will make two TraceSet copies of the measurement data:

Set S12 = Measurement.TraceSet.Traces(1).Channels("S12").DataSet("Through")

Set S21 = Measurement.TraceSet.Traces(1).Channels("S21").DataSet("Through")

Example 2:

Dim TS As mvnaTraceSet

Dim S11 As mvnaIQData

Dim S22 As mvnaIQData

' Will make only one TraceSet copy:

Set TS = Measurement.TraceSet

Set S12 = TS.Traces(1).Channels("S12").DataSet("Through")

Set S21 = TS.Traces(1).Channels("S21").DataSet("Through")

http://www.megiq.com/

 VNA Aplication Programming Interface

© 2015 - 2020 MegiQ www.megiq.com - 15 -

5 Application Programming
The VNA API provides the means to make a custom application (Test Application) for specific VNA
tests or repetitive tasks and verify the measurement results automatically. This chapter gives a
brief outline how a VNA application can be structured.

Although the MiQVNA program is used as an interface between the test application and the VNA
hardware, the user interface of MiQVNA is not intended to be actively involved in the test
application. The test application is supposed to provide its own user interface. This is typically a
simple user screen, possibly with a result and template graph and often with a Pass-Fail decision.
The test application can choose to make the MiQVNA screen visible but this is mainly intended for
development of the application. However, the API provides the functionality to control almost all
VNA measurement features.

The API makes it possible to configure the parameters (frequency, power, bias settings etc) of the
current measurement, but it is not possible to change the port and sweep configuration. The idea is
that the test application loads a preconfigured measurement from a session file and use this during
operation. The preconfigured measurement can be loaded from the Preset session or it can be a
specific measurement that was previously setup by the application developer and stored in a
custom session. The application can change the measurement configuration at any time to perform
different tests.

The API does not provide any graphical functions for plotting data. This is left to the test application
if desired.

http://www.megiq.com/

 VNA Aplication Programming Interface

© 2015 - 2020 MegiQ www.megiq.com - 16 -

5.1 A simple VNA test program
The following code shows a minimal application program that will load a preconfigured
measurement, perform a sweep and check the result.

The developer has already made a session file (using MiQVNA) with an S11 measurement with the
proper Open-Short-Load calibration for a particular test fixture.

The test will pass if all Return Loss values are smaller than -10 dB.

The usual error checking was omitted for clarity of the program structure.

Private WithEvents clsVNA As mvnaVNAMain

Private clsLogSession As mvnaSession

Private lngSerialNumber As Long

Private Sub InitApplication()

 Dim SS As mvnaSession

 ' Create a VNA object and hide the screen

Set clsVNA = new mvnaVNAMain

clsVNA.Application.ShowState = mvnaWSS_Hidden

' Open a session file with a configured test measurement

Set SS = clsVNA.OpenSession("MyPath\MySession.vns")

Set clsVNA.Measurement = SS.Measurements.Item("MyS11Measurement")

' Create a log session

Set clsLogSession = clsVNA.OpenSession(“”)

End Sub

Private Sub ExitApplication()

 ' Save the log session

 Call clsLogSession.SaveSession("MyPath\MyLogSession.vns", False,

mvnaVDO_DATA)

 Set clsLogSession = Nothing

 ' Delete the VNA object

 Set clsVNA = Nothing

End Sub

Private Sub clsVNA_evtSystemStatus(ByVal Status As mvnaVNAStatus)

 ' Event handler: System / Connection status has changed

 lblStatus.Caption = Format(Status)

 ' Enable or disable the test button

 if (Status = mvnaVST_Idle) Then

 cmdRunTest.Enabled = True

 Else

 cmdRunTest.Enabled = False

 End If

End Sub

http://www.megiq.com/

 VNA Aplication Programming Interface

© 2015 - 2020 MegiQ www.megiq.com - 17 -

Private Sub clsVNA_evtDataChange(ByVal TraceNr As Long, ByVal NrTraces As Long)

' Event handler: New data has arrived

If (TraceNr = NrTraces) Then

 ' Check new measurement data

 If (CheckTestData() = True) Then

' Log Pass data

Call clsLogSession.Measurements.AddItem(clsVNA.Measurement,

Format(lngSerialNumber), Now)

lngSerialNumber = lngSerialNumber + 1

 Call MsgBox("Pass")

Else

 Call MsgBox("Fail")

 End If

 End If

End Sub

Private Sub cmdRunTest_Click()

' Event handler: RunTest button pressed

 Call clsVNA.RunSweepOnce()

End Sub

Private Function CheckTestData() As Boolean

 ' Check test data for Return Loss > -10dB

 Dim TS As mvnaTraceSet

 Dim S11 As mvnaIQData

 Dim RLVals() As Double

 Dim i As Long

 ' Get S11 data

 Set TS = clsVNA.TraceSet

Set S11 = TS.Traces(1).Channels("S11").DataSet("Return")

' Get amplitude in dB

Call S11.GetAmpValuesDb(RLVals)

' Check the Return Loss

For i = 0 To S11.Size – 1

 If (RLVals(i) > -10.0) Then

 CheckTestData = False

 Exit Function

 End if

Next i

CheckTestData = True

End Function

http://www.megiq.com/

 VNA Aplication Programming Interface

© 2015 - 2020 MegiQ www.megiq.com - 18 -

6 API Reference

6.1 Class mvnaVNAMain
This is the main driver class.

Properties

6.1.1.1 SystemStatus

C#: virtual mvnaVNAStatus SystemStatus { get; }

VB: Property Get SystemStatus() As mvnaVNASTATUS

Get the status of the VNA system. SystemStatus can be one of the following:

mvnaVST_Disconnected

mvnaVST_Initializing

mvnaVST_Idle

mvnaVST_Calibrating

mvnaVST_Sweeping

6.1.1.2 Application

C#: virtual mvnaApplication Application { get; }

VB: Property Get Application() As mvnaApplication

Returns a reference to the Application class with info about the VNA driver application MiQVNA.

6.1.1.3 VNADevice

C#: virtual mvnaVNADevice VNADevice { get; }

VB: Property Get VNADevice() As mvnaVNADevice

Returns a reference to the VNADevice class to control the VNA hardware. The information is valid
when the system is not in mvnaVST_Disconnected state.

6.1.1.4 Measurement

C#: virtual mvnaMeasurement get_Measurement()

 virtual void set_Measurement(ref mvnaMeasurement value)

VB: Property Get Measurement() As mvnaMeasurement

Property Set Measurement(Val As mvnaMeasurement)

Returns a reference to the current, active VNA measurement.

This reference is static during the lifetime of the driver, so the application can keep a reference to
catch measurement events. However, it’s constituent classes are volatile and can change when
sweeping or when loading a new measurement.

6.1.1.5 PresetSession

C#: virtual mvnaSession PresetSession { get; }

VB: Property Get PresetSession() as mvnaSession

Returns a reference to the VNA Preset Session with preconfigured measurements.

The Preset Session should only be read and not manipulated.

http://www.megiq.com/

 VNA Aplication Programming Interface

© 2015 - 2020 MegiQ www.megiq.com - 19 -

Functions

6.1.1.6 Connect

C#: virtual void Connect()

VB: Sub Connect()

Connect to the VNA hardware. This can only be called when the system is in
mvnaVST_Disconnected state. If the hardware is present the driver will generate

evtSystemStatus events with the states mvnaVST_Initializing and then

mvnaVST_Idle.

If there is no VNA hardware connected an error -2147221502 will be raised.

If a VNA is connected without its power supply it will be in bootloader mode. In that case only the
system will stay in the mvnaVST_Initializing state until the power is connected or

Disconnect is called. This can be checked with the VNAMain.Application.IsBootloader

flag.

If the ‘Auto Connect’ option in MiQVNA is on then the driver will automatically connect and
initialize.

6.1.1.7 ConnectSerial

C#: virtual void ConnectSerial(ref string SerialNumber)

VB: Sub ConnectSerial(SerialNumber As String)

This function is available from MiQVNA version 1.5.008. It allows connecting to a VNA with a
specific serial number. This makes it possible to use multiple VNAs connected to one computer,
running multiple instances of a client program. All leading zeros must be supplied. If the serial
number is an empty string then this function will behave the same as Connect().

6.1.1.8 Disconnect

C#: virtual void Disconnect()

VB: Sub Disconnect()

Disconnect the driver from the VNA.

The ‘Auto Connect’ option in MiQVNA will not cause the driver to reconnect unless the VNA is
unplugged and plugged again.

6.1.1.9 RunCalibration

C#: void virtual void RunCalibration(int CalIndex)

VB: Sub RunCalibration(ByVal CalIndex As Long)

Runs a calibration sweep.

CalIndex sets the desired calibration type (Open, Short, Load etc). The application can

enumerate the necessary calibrations and indexes with the Calibrations collection of the current
measurement.

The SystemStatus event or property can be used to monitor the calibrating state. No

evtDataChange event is raised during calibration.

http://www.megiq.com/

 VNA Aplication Programming Interface

© 2015 - 2020 MegiQ www.megiq.com - 20 -

6.1.1.10 RunSweepOnce

C#: virtual void RunSweepOnce()

VB: Sub RunSweepOnce()

Runs a measurement sweep.

The SystemStatus event or property can be used to monitor the sweeping state. During

sweeping the evtDataChange event will report when a sweep is finished and sweep data can

be processed.

6.1.1.11 RunSweepContinuously

C#: virtual void RunSweepContinuously()

VB: Sub RunSweepContinuously()

Starts continuous sweeping.

The SystemStatus event or property can be used to monitor the sweeping state. During

sweeping the evtDataChange event will report when a sweep is finished and sweep data can

be processed.

6.1.1.12 StopSweep

C#: virtual void StopSweep()

VB: Sub StopSweep()

Stops the continuous sweeping.

The SystemStatus event or property can be used to determine when the last sweep is finished and
the driver returns to mvnaVST_Idle state.

6.1.1.13 OpenSession

C#: virtual mvnaSession OpenSession(ref string FileName)

VB: Function OpenSession(FileName As String) As mvnaSession

Returns a Session object.

FileName designates a session file and must include the .vns extension. If FileName is an

empty string then a new and empty Session is returned.

Events

6.1.1.14 evtSystemStatus

C#: virtual event __mvnaVNAMain_evtSystemStatusEventHandler evtSystemStatus

VB: Event evtSystemStatus(ByVal Status As mvnaVNAStatus)

Reports the status of the VNA system. Status can be one of the following:

mvnaVST_Disconnected

mvnaVST_Initializing

mvnaVST_Idle

mvnaVST_Calibrating

mvnaVST_Sweeping

http://www.megiq.com/

 VNA Aplication Programming Interface

© 2015 - 2020 MegiQ www.megiq.com - 21 -

6.1.1.15 evtSweepProgress

C#: virtual event __mvnaVNAMain_evtSweepProgressEventHandler evtSweepProgress

VB: Event evtSweepProgress(ByVal PointsReceived As Long, ByVal PointsTotal As

Long)

Reports the progress during a sweep.

The values PointsReceived and PointsTotal can be used to control a progress bar. If

PointsTotal is zero the progressbar can be hidden. A progressbar can be desirable during

long sweeps.

6.1.1.16 evtMeasurementChange

C#: virtual event __mvnaVNAMain_evtMeasurementChangeEventHandler

evtMeasurementChange

VB: Event evtMeasurementChange()

Reports when the Current Measurement has been replaced, either by the application or directly by
a user in MiQVNA.

This event can be used to update settings on the screen.

6.1.1.17 evtDataChange

virtual event __mvnaVNAMain_evtDataChangeEventHandler evtDataChange

VB: Event evtDataChange(ByVal TraceNr As Long, ByVal NrTraces As Long)

Reports when a trace is complete and data can be processed.

For a multi-trace (parametric) sweep NrTraces reports the total number of traces in the

TraceSet and TraceNr reports the number of the trace that has new data.

Though for simple traces both parameters will always be 1 it is recommended to use code like:

if (TraceNr == NrTraces)

{

process data here;

}

6.1.1.18 evtTerminate

C#: virtual event __mvnaVNAMain_evtTerminateEventHandler evtTerminate

VB: Event evtTerminate()

Reports when the driver is terminated.

Although this event will also fire when the application terminates the driver, the main purpose is to
detect that the driver is terminated by other means: the exit button in MiQVNA or by Windows task
manager. The application can use it to clean up and exit if desired. The event may not fire when
MiQVNA is terminated improperly.

http://www.megiq.com/

 VNA Aplication Programming Interface

© 2015 - 2020 MegiQ www.megiq.com - 22 -

6.2 Class mvnaApplication
This class contains information about the MiQVNA driver application.

Properties

6.2.1.1 Name

C#: virtual string Name { get; }

VB: Property Get Name() As String

Returns the driver name (MiQVNA).

6.2.1.2 ExeName

C#: virtual string ExeName { get; }

VB: Property Get ExeName() As String

Returns the name of the driver executable (MiQVNA.);

6.2.1.3 Path

C#: virtual string Path { get; }

VB: Property Get Path() As String

Returns the full path, without file name, to the driver executable.

6.2.1.4 Version

C#: virtual string Version { get; }

VB: Property Get Version() As String

Returns the driver version.

6.2.1.5 ShowState

C#: virtual mvnaWindowShowState ShowState { set; get; }

VB: Property Get ShowState() As mvnaWindowShowState

Property Let ShowState(ByVal Val As mvnaWindowShowState)

Controls the screen state of MiQVNA.

WindowState can be one of the following:

mvnaWSS_Hidden

mvnaWSS_Minimized

mvnaWSS_Normal

mvnaWSS_Maximized

In Hidden mode MiQVNA is not visible and there is no button on the taskbar. In Minimized mode
there will be a taskbar button but the screen is minimized.

http://www.megiq.com/

 VNA Aplication Programming Interface

© 2015 - 2020 MegiQ www.megiq.com - 23 -

6.3 Class mvnaVNADevice
Provides info about the VNA hardware. Also allows control over the port LEDs.

Properties

6.3.1.1 VNAInfoString

C#: virtual string VNAInfoString { get; }

VB: Property Get VNAInfoString() As String

Returns a summary string with VNA device info, formatted with tabs and returns.

6.3.1.2 IsBootloader

C#: virtual bool IsBootloader { get; }

VB: Property Get IsBootloader() As Boolean

Returns True when the device is in bootloader mode.

The bootloader is active when the VNA is connected to the USB port without power supply. There
is (almost) no API functionality in this mode. The devices switches back to full VNA functionality
when the power is reapplied.

6.3.1.3 Vendor

C#: virtual string Vendor { get; }

VB: Property Get Vendor() As String

Returns the Vendor name.

6.3.1.4 Product

C#: virtual string Product { get; }

VB: Property Get Product() As String

Returns the Product name (VNA21 series).

6.3.1.5 DeviceType

C#: virtual string DeviceType { get; }

VB: Property Get DeviceType() As String

Returns the device type (VNA).

6.3.1.6 SerialNumber

C#: virtual string SerialNumber { get; }

VB: Property Get SerialNumber() As String

Returns the serial number of 8 decimal digits.

6.3.1.7 HardwareVersion

C#: virtual string HardwareVersion { get; }

VB: Property Get HardwareVersion() As String

Returns the hardware version (201)

http://www.megiq.com/

 VNA Aplication Programming Interface

© 2015 - 2020 MegiQ www.megiq.com - 24 -

6.3.1.8 FirmwareVersion

C#: virtual string FirmwareVersion { get; }

VB: Property Get FirmwareVersion() As String

Returns the version of the firmware of the VNA.

In bootloader mode this will be the version of the bootloader.

6.3.1.9 CPLDVersion

C#: virtual string CpldVersion { get; }

VB: Property Get CPLDVersion() As String

Returns the version of the CPLD code.

This is not available in bootloader mode.

6.3.1.10 Ports

C#: virtual mvnaVNAPort Ports { get; }

VB: Property Get Ports() As mvnaVNAPort

Returns the available ports.

Ports is a bitmap of these values:

mvnaVNP_None = 0

mvnaVNP_Port1 = 1

mvnaVNP_Port2 = 2

mvnaVNP_Port3 = 4

6.3.1.11 BiasOption

C#: virtual bool BiasOption { get; }

VB: Property Get BiasOption() As Boolean

Returns True if the bias option is installed.

6.3.1.12 DeviceID

C#: virtual string DeviceID { get; }

VB: Property Get DeviceID() As String

Returns the device ID.

The device ID is a unique code that identifies the VNA.

http://www.megiq.com/

 VNA Aplication Programming Interface

© 2015 - 2020 MegiQ www.megiq.com - 25 -

6.3.1.13 OverrideLedState

C#: virtual void OverrideLedState(mvnaVNAPort Port, mvnaColor Color,

mvnaLedState State)

VB: Sub OverrideLedState(ByVal Port As mvnaVNAPort, ByVal Color As mvnaColor,

ByVal State As mvnaLedState)

This function is used to control the port LEDs at the VNA front panel.

Port specifies the target LED(s). Multiple LEDs can be addressed at once by OR-ing bits.

Color is a bitmap that specifies the color of the LED(s). Bits can be OR-ed:

mvnaCOL_None = 0

mvnaCOL_Red = 1

mvnaCOL_Green = 2

mvnaCOL_Blue = 4

mvnaCOL_All = 7

State specifies the override state:

mvnaLED_Off

mvnaLED_On

mvnaLED_Blink

mvnaLED_BlinkFast

The override is released when all colors of a LED are in the off-state. It is therefore not possible to
force a LED off.

http://www.megiq.com/

 VNA Aplication Programming Interface

© 2015 - 2020 MegiQ www.megiq.com - 26 -

6.4 Class mvnaSession
Session manages a collection of Measurements.

Properties

6.4.1.1 FileName

C#: virtual string FileName { get; }

VB: Property Get FileName() As String

Returns the file name from which the session is read, or to which the session is saved.

6.4.1.2 Dirty

C#: virtual bool Dirty { get; }

VB: Property Get Dirty() As Boolean

Returns the Dirty flag that indicates when the session has been changed since it was last read or
saved.

6.4.1.3 Measurements

C#: virtual mvnaMeasurements Measurements { get; }

VB: Property Get Measurements() As mvnaMeasurements

Returns the collection of Measurements

Functions

6.4.1.4 Clear

C#: virtual void Clear()

VB: Public Sub Clear()

Clears the Measurements collection and file name.

6.4.1.5 SaveSession

C#: virtual bool SaveSession(ref string FileName, bool SaveAs,

mvnaVNADataOptions SaveOptions)

VB: Function SaveSession(FileName As String, ByVal SaveAs As Boolean, ByVal

SaveOptions As mvnaVNADataOptions) As Boolean

Save the session to a file. It will overwrite an existing file.

FileName specifies a full path with filename and extension. The normal extension is ‘.vns’ but

another extension is possible.

SaveAs is not used and must be False.

SaveOptions is a bitmask that specifies which elements are to be saved:

mvnaVDO_NONE = 0

mvnaVDO_CALIBRATION = 2

mvnaVDO_DATA = 4

When mvnaVDO_NONE is used the configuration is saved without calibration or measurement

data.

http://www.megiq.com/

 VNA Aplication Programming Interface

© 2015 - 2020 MegiQ www.megiq.com - 27 -

Events

6.4.1.6 evtDirty

C#: virtual event __mvnaSession_evtDirtyEventHandler evtDirty

VB: Event evtDirty(ByVal Flag As Boolean)

Reports that the session has changed and may need to be saved.

http://www.megiq.com/

 VNA Aplication Programming Interface

© 2015 - 2020 MegiQ www.megiq.com - 28 -

6.5 Class mvnaMeasurements
Collection of mvnaMeasurement.

Each item will be assigned a key by the class. This key can be used to identify an item. Keys can
be obtained by enumerating the collection with a for loop.

Properties

6.5.1.1 Item

C#: virtual mvnaMeasurement get_Item(ref object IndexKey)

VB: Property Get Item(IndexKey As Variant) As mvnaMeasurement

Returns a Measurement.

IndexKey can contain an index (base 1) or a key string.

6.5.1.2 ItemByName

C#: virtual mvnaMeasurement get_ItemByName(ref string Name)

VB: Property Get ItemByName(Name As String) As mvnaMeasurement

Returns a Measurement by Name.

Name is not case sensitive.

Note: Measurements in a Session can have duplicate names. When this property is used only the
first of duplicate names is returned.

6.5.1.3 Count

C#: virtual int Count { get; }

VB: Property Get Count() As Long

Returns the number of Measurements in the collection.

Functions

6.5.1.4 AddItem

C#: virtual mvnaMeasurement AddItem(ref mvnaMeasurement Measurement, ref

string Name, System.DateTime DateTime)

VB: Function AddItem(Measurement As mvnaMeasurement, Name As String, ByVal

DateTime As Date) As mvnaMeasurement

Add a Measurement to the collection.

Measurement is the item to add. Name is the name of the measurement. It is allowed to add

multiple items with the same name. DateTime is a timestamp.

6.5.1.5 Remove

C#: virtual void Remove(ref object IndexKey)

VB: Sub Remove(IndexKey As Variant)

Removes a Measurement.

http://www.megiq.com/

 VNA Aplication Programming Interface

© 2015 - 2020 MegiQ www.megiq.com - 29 -

IndexKey can contain an index (base 1) or a key string.

http://www.megiq.com/

 VNA Aplication Programming Interface

© 2015 - 2020 MegiQ www.megiq.com - 30 -

6.6 Class mvnaMeasurement
The Measurement class contains functions and properties to control the VNA, measurement

flow and access to the measurement data.

Properties

6.6.1.1 Name

C#: virtual string get_Name()

 virtual void set_Name(ref string value)

VB: Property Get Name() As String

 Property Let Name(Val As String)

Set or Get the Name of the measurement. It is up to the application to assign a name.

6.6.1.2 DateTime

C#: virtual System.DateTime DateTime { set; get; }

VB: Property Get DateTime() As Date

 Property Let DateTime(ByVal Val As Date)

Set or Get the timestamp of the measurement. It is up to the application to assign a timestamp.

6.6.1.3 Key

C#: virtual string Key { get; }

VB: Property Get Key() As String

Returns the Key in the Measurements collection for this Measurement.

Since the collection allows duplicate names, the key can be used to identify a measurement. The
key is assigned by the driver and is not necessarily the same after saving and retrieving a
measurement.

6.6.1.4 Dirty

C#: virtual bool Dirty { get; }

VB: Property Get Dirty() As Boolean

Get the Dirty flag.

The Dirty flag indicates whether the measurement has changed since it was retrieved from file or
since it was last saved.

6.6.1.5 DualCalkit

C#: virtual bool DualCalkit { set; get; }

VB: Property Get DualCalkit() As Boolean

 Property Let DualCalkit(ByVal Val As Boolean)

Set or Get a flag that indicates whether a dual calibration kit is used.

Using a dual cal kit allows several calibration cycles to be combined for a (much) shorter
calibration procedure. Changing this flag will cause the Calibrations collection to change (and
cause a CalibrationChange event). However, the calibration data, if present, will be preserved.

6.6.1.6 UseCalibration

C#: virtual bool UseCalibration { set; get; }

http://www.megiq.com/

 VNA Aplication Programming Interface

© 2015 - 2020 MegiQ www.megiq.com - 31 -

VB: Property Get UseCalibration() As Boolean

 Property Let UseCalibration(ByVal Val As Boolean)

Get or Set a flag to apply the user calibration to the measurement or not.

If this flag is True, the user calibration will be applied to the measurement. If the flag is False, only
the port calibration is used. Changing this flag will not cause a renormalization of the
measurement. The Renormalize() function is used to cause a renormalization.

6.6.1.7 PortBias

C#: virtual mvnaVNABiasControl get_PortBias(mvnaVNAPort Port)

 virtual void set_PortBias(mvnaVNAPort Port, mvnaVNABiasControl value)

VB: Property Get PortBias(ByVal Port As mvnaVNAPort) As mvnaVNABiasControl

 Property Let PortBias(ByVal Port As mvnaVNAPort, ByVal Bias As

mvnaVNABiasControl)

Get or Set a Bias switch control flag for each VNA port.

This function controls the routing of the Bias generator output to each of the ports.

For the Set function Port is a bitmask allowing multiple ports, but it must designate a single port

for the Get function.

Bias is one of the following:

mvnaVBC_Off The port has a high impedance.

mvnaVBC_Ground The port is routed to ground for DC.

mvnaVBC_On The port is connected to the bias generator.

When the bias switch is Off, the port has a DC resistance to ground of 100 kOhm.

When the switch is set to Ground, the port has a DC resistance of about 20 Ohm to ground. This
allows for a return path of the Bias current through a DUT.

When the switch is set to On, there is a DC impedance of about 20 Ohm to the Bias generator.

The Bias generator itself (voltage and current) are controlled through the Bias Voltage and Bias
Current parameters in the Parameters collection. They can be part of a sweep.

6.6.1.8 PortIdleGenerator

C#: virtual mvnaVNAPort PortIdleGenerator { set; get; }

VB: Property Get PortIdleGenerator() As mvnaVNAPort

 Property Let PortIdleGenerator (ByVal Val As mvnaVNAPort)

Get or Set the routing of the VNA signal generator during idle state.

Port must designate a single VNA port.

Although this parameter is not part of the measurement configuration, this parameter is stored with
the measurement anyway.

6.6.1.9 TraceSet

C#: virtual mvnaTraceSet TraceSet { get; }

VB: Property Get TraceSet() As mvnaTraceSet

http://www.megiq.com/

 VNA Aplication Programming Interface

© 2015 - 2020 MegiQ www.megiq.com - 32 -

Returns a TraceSet object that contains the measurement data.

The TraceSet is a copy of the actual measurement data. Please refer to the section about the

TraceSet object life cycle for more information.

6.6.1.10 Parameters

C#: virtual mvnaParameters Parameters { get; }

VB: Property Get Parameters() As mvnaParameters

Returns a Parameters collection that contains all measurement parameters.

6.6.1.11 Calibrations

C#: virtual mvnaCalibrations Calibrations { get; }

VB: Property Get Calibrations() As mvnaCalibrations

Returns a Calibrations collection that contains an enumeration of the calibration cycles for

the measurement.

Functions

6.6.1.12 ClearCalibration

C#: virtual void ClearCalibration()

VB: Sub ClearCalibration()

Clears the calibration data of the measurement.

The (normalized) measurement data will remain intact but can not be renormalized, unless a new
calibration is performed again.

6.6.1.13 ClearData

C#: virtual void ClearData()

VB: Sub ClearData()

Clears the measurement data of the measurement.

The calibration data will remain intact.

6.6.1.14 Renormalize

C#: virtual void Renormalize()

VB: Sub Renormalize()

Renormalizes the measurement data with the calibration set.

It is possible to run a measurement without calibration, then perform a calibration and use
Renormalize() to apply the new calibration set on the measurement data.

Events

6.6.1.15 evtDirty

C#: virtual event __mvnaMeasurement_evtDirtyEventHandler evtDirty

VB: Event evtDirty(ByVal Flag As Boolean)

Reports that the measurement has changed and may need to be saved.

http://www.megiq.com/

 VNA Aplication Programming Interface

© 2015 - 2020 MegiQ www.megiq.com - 33 -

6.6.1.16 evtSetupChange

C#: virtual event __mvnaMeasurement_evtSetupChangeEventHandler evtSetupChange

VB: Event evtSetupChange()

Reports that the setup (port or sweep configuration) has changed.

This event can be used to update the user interface of the test application.

6.6.1.17 evtSettingsChange

C#: virtual event __mvnaMeasurement_evtSettingsChangeEventHandler

evtSettingsChange

VB: Event evtSettingsChange()

Reports that one of the parameter settings has been changed.

This event can be used to update the user interface of the test application.

6.6.1.18 evtCalibrationChange

C#: virtual event __mvnaMeasurement_evtCalibrationChangeEventHandler

evtCalibrationChange

VB: Event evtCalibrationChange(ByVal CalibrationNr As Long, ByVal

NrCalibrations As Long)

Reports that list of calibrations has been changed.

This event can be used to update a list of calibrations in the user interface of the test application.

6.6.1.19 evtSweepProgress

C#: virtual event __mvnaMeasurement_evtSweepProgressEventHandler

evtSweepProgress

VB: Event evtSweepProgress(ByVal PointsReceived As Long, ByVal PointsTotal As

Long)

Reports the progress during a sweep.

The values PointsReceived and PointsTotal can be used to control a progress bar. If

PointsTotal is zero the progressbar can be hidden. A progressbar can be desirable during

long sweeps.

6.6.1.20 evtIdleSettingsChange

C#: virtual event __mvnaMeasurement_evtIdleSettingsChangeEventHandler

evtIdleSettingsChange

VB: Event evtIdleSettingsChange()

Reports that an idle setting has changed.

Currently this event only applies to the PortIdleGenerator setting.

http://www.megiq.com/

 VNA Aplication Programming Interface

© 2015 - 2020 MegiQ www.megiq.com - 34 -

6.7 Class mvnaTraceSet
The TraceSet class contains all data pertaining to a full sweep.

Example to retrieve a single Q-value:

C#: double QVal1 =

TraceSet.Traces[1].Channels["S11"].DataSet["Return"].get_QValue(1);

VB: Dim QVal1 As Double

QVal1 = TraceSet.Traces(1).Channels("S11").DataSet("Return").QValue(1)

Properties

6.7.1.1 Traces

C#: virtual mvnaTraces Traces { get; }

VB: Property Get Traces() As mvnaTraces

Get the collection of Traces in this traceset

6.7.1.2 Parameters

C#: virtual mvnaParameters Parameters { get; }

VB: Property Get Parameters() As mvnaParameters

Get the collection of Parameters that are used for measuring this traceset.

http://www.megiq.com/

 VNA Aplication Programming Interface

© 2015 - 2020 MegiQ www.megiq.com - 35 -

6.8 Class mvnaTraces
Collection of a full TraceSet.

Properties

6.8.1.1 Item

C#: virtual mvnaTrace this[ref object IndexKey] { get; }

VB: Property Get Item(IndexKey As Variant) As mvnaTrace

Returns a Trace.

IndexKey can contain an index (base 1). Keys are not used.

6.8.1.2 Count

C#: virtual int Count { get; }

VB: Property Get Count() As Long

Returns the number of Traces in the collection.

http://www.megiq.com/

 VNA Aplication Programming Interface

© 2015 - 2020 MegiQ www.megiq.com - 36 -

6.9 Class mvnaTrace
Contains the data of one Trace.

Properties

6.9.1.1 TraceNumber

C#: virtual int TraceNumber { get; }

VB: Property Get TraceNumber() As Long

Returns the number of the Trace in the TraceSet.

6.9.1.2 Channels

C#: virtual mvnaTraceChannels Channels { get; }

VB: Property Get Channels() As mvnaTraceChannels

Returns the Channels collection with channel data.

6.9.1.3 Parameters

C#: virtual mvnaParameters Parameters { get; }

VB: Property Get Parameters() As mvnaParameters

Returns the collection of Parameters that are used for this trace.

http://www.megiq.com/

 VNA Aplication Programming Interface

© 2015 - 2020 MegiQ www.megiq.com - 37 -

6.10 Class mvnaTraceChannels
Collection of all Channels in the Trace.

These are the possible TraceChannels in this collection:

• S11

• S22

• S33

• S21

• S12

• S31

• S32

It is possible that future versions contain more names.

Properties

6.10.1.1 Item

C#: virtual mvnaTraceChannel this[ref object IndexKey] { get; }

VB: Property Get Item(IndexKey As Variant) As mvnaTraceChannel

Returns a TraceChannel.

IndexKey can contain an index (base 1), or a name.

6.10.1.2 Count

C#: virtual int Count { get; }

VB: Property Get Count() As Long

Returns the number of TraceChannels in the collection.

http://www.megiq.com/

 VNA Aplication Programming Interface

© 2015 - 2020 MegiQ www.megiq.com - 38 -

6.11 Class mvnaTraceChannel
Contains the DataSet for a TraceChannel.

Properties

6.11.1.1 Name

C#: virtual string Name { get; }

VB: Property Get Name() As String

Returns the number of the Name of the Trace.

6.11.1.2 DataSet

C#: virtual mvnaTraceDataSet DataSet { get; }

VB: Property Get DataSet() As mvnaTraceDataSet

Returns the DataSet that contains the calibration and measurement data.

http://www.megiq.com/

 VNA Aplication Programming Interface

© 2015 - 2020 MegiQ www.megiq.com - 39 -

6.12 Class mvnaTraceDataSet
Collection of calibration and measurement IQData.

If the data is Return data the IQData names can be:

• CalOpen

• CalShort

• CalLoad

• CalSource

• Return

CalSource is not a physical calibration but results from the Open / Short / Load calibration. It
represents the source impedance at the Calibration Plane of the Source port, as it drives the EUT.

For Through data the IQData names can be:

• CalThrough

• CalIsolation

• CalSink

• Through

CalSink is measured during the Through calibration. It represents the impedance at the Calibration
Plane of the Sink port, as it loads the EUT.

CalSource and CalSink are factored in during a 12-term normalization.

It is possible that future versions contain more names.

Properties

6.12.1.1 Item

C#: virtual mvnaIQData this[ref object IndexKey] { get; }

VB: Property Get Item(IndexKey As Variant) As mvnaIQData

Returns an IQData object.

IndexKey can contain an index (base 1), or a name of an IQData object.

6.12.1.2 Count

C#: virtual int Count { get; }

VB: Property Get Count() As Long

Returns the number of IQData objects in the collection.

http://www.megiq.com/

 VNA Aplication Programming Interface

© 2015 - 2020 MegiQ www.megiq.com - 40 -

6.13 Class mvnaParameters
Collection of Parameters.

The Parameters in this collection can be:

• VNA_FREQUENCY

• GEN_POWER

• DET_ATTENUATION1

• DET_ATTENUATION2

• BIAS_VOLTAGE

• BIAS_CURRENT

It is possible that future versions contain more names.

Parameter values are doubles that specify physical SI units or dBs. The Parameter will provide the
dimension.

Properties

6.13.1.1 Item

C#: virtual mvnaParameter this[ref object IndexKey] { get; }

VB: Property Get Item(IndexKey As Variant) As mvnaParameter

Returns a Parameter.

IndexKey can contain an index (base 1), or a parameter name.

6.13.1.2 Count

C#: virtual int Count { get; }

VB: Property Get Count() As Long

Returns the number of Parameters in the collection.

http://www.megiq.com/

 VNA Aplication Programming Interface

© 2015 - 2020 MegiQ www.megiq.com - 41 -

6.14 Class mvnaParameter

Properties

6.14.1.1 Name

C#: virtual string Name { get; }

VB: Property Get Name() As String

Returns the name of the parameter.

6.14.1.2 Dimension

C#: virtual string Dimension { get; }

VB: Property Get Dimension() As String

Returns the dimension of the parameter.

Dimension can be ‘dB’, ‘V’ or another physical unit.

6.14.1.3 MinValue

C#: virtual double MinValue { get; }

VB: Property Get MinValue() As Double

Returns the minimum allowable value of the parameter.

6.14.1.4 MaxValue

C#: virtual double MaxValue { get; }

VB: Property Get MaxValue() As Double

Returns the maximum allowable value of the parameter.

6.14.1.5 CurrentValue

C#: virtual double CurrentValue { set; get; }

VB: Property Get CurrentValue() As Double

 Property Let CurrentValue(ByVal Val As Double)

Get or Set the current parameter value.

CurrentValue is used during the idle state of the VNA, or as a fixed value if the parameter is

not used as a sweep parameter.

6.14.1.6 StartValue

C#: virtual double StartValue { set; get; }

VB: Property Get StartValue() As Double

 Property Let StartValue(ByVal Val As Double)

Get or Set the start value of the parameter of a sweep.

StartValue, StopValue and Steps are used when the parameter is a sweep parameter.

6.14.1.7 StopValue

C#: virtual double StopValue { set; get; }

VB: Property Get StopValue() As Double

 Property Let StopValue(ByVal Val As Double)

http://www.megiq.com/

 VNA Aplication Programming Interface

© 2015 - 2020 MegiQ www.megiq.com - 42 -

Get or Set the stop value of the parameter of a sweep.

StartValue, StopValue and Steps are used when the parameter is a sweep parameter.

6.14.1.8 Steps

C#: virtual int Steps { set; get; }

VB: Property Get Steps() As Long

 Property Let Steps(ByVal Val As Long)

Get or Set the number of steps of a sweep.

StartValue, StopValue and Steps are used when the parameter is a sweep parameter.

6.14.1.9 IsSweep

C#: virtual bool IsSweep { get; }

VB: Property Get IsSweep() As Boolean

Returns True if the parameter is used as a sweep parameter.

6.14.1.10 SweepType

C#: virtual mvnaSweepType get_SweepType()

virtual void set_SweepType(ref mvnaSweepType value)
VB: Property Get SweepType() As mvnaSweepType

 Property Let SweepType(Val As mvnaSweepType)

Get or Set the type of sweep. mvnaSweepType can be one of the following:

mvnaSWT_Lin Linear sweep of Steps + 1 points from StartValue to StopValue

mvnaSWT_List Sweep Steps + 1 points from a list of sweep values contained in

SweepValueList.

6.14.1.11 SweepValueList
C#: System.Array get_SweepValueList()

void set_SweepValueList(ref System.Array value)

VB: Property Get SweepValueList() As Double()

 Property Let SweepValueList(Val() As Double)

Get or Set the list of sweep values for sweep type mvnaSWT_List. The variable Steps must be

manually set to the number of points in the list – 1.

Functions

6.14.1.12 Update
C#: virtual void Update()

VB: Public Sub Update()

This function must be called after one or more of the parameter values have been changed, to put
the changes into effect.

http://www.megiq.com/

 VNA Aplication Programming Interface

© 2015 - 2020 MegiQ www.megiq.com - 43 -

6.15 Class mvnaCalibrations
This is a collection of Calibrations.

Properties

6.15.1.1 Item

C#: virtual mvnaCalibration get_Item(ref object IndexKey)

VB: Property Get Item(IndexKey As Variant) As mvnaCalibration

Returns a Calibration.

IndexKey can contain an index (base 1), or a calibration name.

6.15.1.2 Count

C#: virtual int Count { get; }

VB: Property Get Count() As Long

Returns the number of Calibrations in the collection.

http://www.megiq.com/

 VNA Aplication Programming Interface

© 2015 - 2020 MegiQ www.megiq.com - 44 -

6.16 Class mvnaCalibration
This is a class for enumeration of the calibration cycles. It does not contain actual calibration data.
The calibration data is stored in a DataSet.

Properties

6.16.1.1 Index

C#: virtual int Index { get; }

VB: Property Get Index() As Long

Returns the index number (base 1) in the Calibrations collection.

6.16.1.2 Caption

C#: virtual string Caption { get; }

VB: Property Get Caption() As String

Returns a caption for use in a listbox or such.

6.16.1.3 Complete

C#: virtual bool Complete { get; }

VB: Property Get Complete() As Boolean

Returns True if the calibration is complete, i.e. that all calibration cycles have been performed. This
can be used for completion indication in the user interface of the application.

http://www.megiq.com/

 VNA Aplication Programming Interface

© 2015 - 2020 MegiQ www.megiq.com - 45 -

6.17 Class mvnaIQData
After digging deeply into the TraceSet, we get to the actual calibration or measurement data,
stored in the IQData object.

The IQData object holds measured or calculated I/Q samples of a sweep, including ‘parametric’

values (usually frequencies). The samples are stored as (float) doubles in I/Q format. The data is
stored in three arrays: IValues, QValues and PValues.

From an ‘objective’ view it would be logical to store these values in objects (the mvnaIQ class) but

this makes data manipulation extremely slow. An interface to use values as IQ objects is included
to allow some handy manipulation of individual samples, but it is strongly recommended to perform
data processing and handling on the IQData object as a whole or by iterating through the

IValues and QValues arrays that can be obtained from this class.

There are several categories of functions:

• Get or set individual I, Q and P values

• Get or Set the whole I, Q and P arrays

• Get or Set IQ objects and array

• Fill the I and Q arrays with constant values

• Convert between I/Q and Amp/Phase values, linear or dB

• Return a new IQData object with constant (zero, one, two) values

• Unitary arithmetic (negate, root, smoothing)

• Binary arithmetic (add, subtract, multiply, divide)

• Convert S parameters to and from physical values (Z, SWR, RL, FL)

The arithmetic functions operate on the whole data arrays at once and they return a new IQData
object with the result. This makes it possible to cascade the functions and perform complex
operations very efficiently. The arithmetic functions don’t copy the PData to the target, that has to
be done manually if desired. All arrays involved must have the same size.

For example, the following code calculates the impedances from the S11 samples:

 ' Calculate Z = -(S11+1) * Zo / (S11-1)

 Dim Zo As mvnaIQData

 Dim Z As mvnaIQData

 ' Create array Zo with 50 Ohm values

 Set Zo = New mvnaIQData

 Call Zo.CreateIQData(0, 0, 50.0, 0, S11.Size)

 ' Calculate Z

 Set Z = S11.Add(S11.One).Neg.Multiply(Zo).Divide(S11.Subtract(S11.One))

 ' PValues are not copied in arithmetic functions, copy them here

 Call Z.SetPValues(S11.PValues)

This code is implemented in IQData.GetZ().

http://www.megiq.com/

 VNA Aplication Programming Interface

© 2015 - 2020 MegiQ www.megiq.com - 46 -

6.17.1 Object functions
C#: virtual string get_Name()

 virtual void set_Name(ref string value)

VB: Property Get Name() As String

Property Let Name(Val As String)

C#: virtual int Size { set; get; }

VB: Property Get Size() As Long

Property Let Size(ByVal Val As Long)

C#: virtual int SizePreserve { set; }

VB: Property Let SizePreserve(ByVal Val As Long)

SizePreserve() allows enlarging the size without losing data.

C#: virtual void CopyFrom(ref mvnaIQData IQData)

VB: Sub CopyFrom(IQData As mvnaIQData)

C#: virtual mvnaIQData GetCopy()

VB: Function GetCopy() As mvnaIQData

6.17.2 Sample value manipulation
C#: virtual double PLower { get; }

VB: Property Get PLower() As Double

C#: virtual double PUpper { get; }

VB: Property Get PUpper() As Double

Return the lowest and highest values in PValues.

C#: virtual double get_IValue(int Index)

C#: virtual void set_IValue(int Index, double value)

VB: Property Get IValue(ByVal Index As Long) As Double

VB: Property Let IValue(ByVal Index As Long, ByVal Value As Double)

C#: virtual double get_QValue(int Index)

C#: virtual void set_QValue(int Index, double value)

VB: Property Get QValue(ByVal Index As Long) As Double

VB: Property Let QValue(ByVal Index As Long, ByVal Value As Double)

C#: virtual double get_PValue(int Index)

C#: virtual void set_PValue(int Index, double value)

VB: Property Get PValue(ByVal Index As Long) As Double

VB: Property Let PValue(ByVal Index As Long, ByVal Value As Double)

C#: virtual mvnaIQ get_Value(int Index)

C#: virtual void set_Value(int Index, ref mvnaIQ value)

VB: Property Get Value(ByVal Index As Long) As mvnaIQ

VB: Property Set Value(ByVal Index As Long, Value As mvnaIQ)

C#: virtual System.Array IValues { get; }

C#: virtual void GetIValues(ref System.Array Vals)

C#: virtual void SetIValues(ref System.Array Vals)

VB: Property Get IValues() As Double() ' Creates and returns a new array

VB: Sub GetIValues(Vals() As Double) ' Redimensions and fills 'Vals()'

VB: Sub SetIValues(Vals() As Double) ' Copies 'Vals()' to 'IValues'

C#: virtual System.Array QValues { get; }

C#: virtual void GetQValues(ref System.Array Vals)

C#: virtual void SetQValues(ref System.Array Vals)

http://www.megiq.com/

 VNA Aplication Programming Interface

© 2015 - 2020 MegiQ www.megiq.com - 47 -

VB: Property Get QValues() As Double()

VB: Sub GetQValues(Vals() As Double)

VB: Sub SetQValues(Vals() As Double)

C#: virtual System.Array PValues { get; }

C#: virtual void GetPValues(ref System.Array Vals)

C#: virtual void SetPValues(ref System.Array Vals)

VB: Property Get PValues() As Double()

VB: Sub GetPValues(Vals() As Double)

VB: Sub SetPValues(Vals() As Double)

C#: virtual System.Array Values { get; }

C#: virtual void SetValues(ref System.Array Vals)

VB: Property Get Values() As mvnaIQ()

VB: Sub SetValues(Vals() As mvnaIQ)

When assigning an array to IQData, its Size will be adjusted automatically.

C#: virtual void set_ValuesAll(ref mvnaIQ value)

VB: Property Set ValuesAll(Value As mvnaIQ)

ValuesAll() sets all values to that of 'Value'

C#: virtual void CreateIQData(ref double PMin, ref double PMax, ref double

IVal, ref double QVal, ref int NrPoints)

VB: Sub CreateIQData(PMin As Double, PMax As Double, IVal As Double, QVal As

Double, NrPoints As Long)

CreateIQData() fills IQData with PValues from PMin to PMax and IValues and QValues with the
constant value IVal and QVal. The object will be resized.

6.17.3 Array arithmetic
C#: virtual mvnaIQData Zero { get; }

C#: virtual mvnaIQData One { get; }

C#: virtual mvnaIQData Two { get; }

VB: Property Get Zero() As mvnaIQData

VB: Property Get One() As mvnaIQData

VB: Property Get Two() As mvnaIQData

Return an IQData object with IValues all 0, 1 or 2.

C#: virtual mvnaIQData OneQ { get; }

VB: Property Get OneQ() As mvnaIQData

Returns an IQData object with QValues all 1.

C#: virtual mvnaIQData Neg { get; }

C#: virtual mvnaIQData SqRoot { get; }

VB: Property Get Neg() As mvnaIQData

VB: Property Get SqRoot() As mvnaIQData

C#: virtual mvnaIQData Add(ref mvnaIQData Val)

C#: virtual mvnaIQData Subtract(ref mvnaIQData Val)

C#: virtual mvnaIQData Multiply(ref mvnaIQData Val)

C#: virtual mvnaIQData Divide(ref mvnaIQData Val)

VB: Function Add(Val As mvnaIQData) As mvnaIQData

VB: Function Subtract(Val As mvnaIQData) As mvnaIQData

VB: Function Multiply(Val As mvnaIQData) As mvnaIQData

VB: Function Divide(Val As mvnaIQData) As mvnaIQData

http://www.megiq.com/

 VNA Aplication Programming Interface

© 2015 - 2020 MegiQ www.megiq.com - 48 -

C#: virtual mvnaIQData Amp { get; }

VB: Property Get Amp() As mvnaIQData

Returns an IQData object with IValues set to the amplitudes.

C#: virtual mvnaIQData get_Smooth(ref double Factor)

VB: Property Get Smooth(Factor As Double) As mvnaIQData

Returns an IQData object with the values sequentially averaged. Factor is between 0 and 1.

6.17.4 Sample conversion
C#: virtual double get_AmpValue(int Index)

C#: virtual double get_AmpValueDB(int Index)

VB: Property Get AmpValue(ByVal Index As Long) As Double

VB: Property Get AmpValueDB(ByVal Index As Long) As Double

The conversion from I/Q to dB is always 20 * log(|Amp|)

C#: virtual void GetAmpValuesDb(ref System.Array Vals)

C#: virtual void GetAmpPhaseValuesDbDegrees(ref System.Array Amp, ref

System.Array Phase)

VB: Sub GetAmpValuesDb(Vals() As Double)

VB: Sub GetAmpPhaseValuesDbDegrees(Amp() As Double, Phase() As Double)

Fill the arguments with the converted value arrays.

6.17.5 Computations
C#: virtual void GetZ(ref System.Array Z, ref mvnaIQ Zo)

C#: virtual void SetZ(ref System.Array Z, ref mvnaIQ Zo)

VB: Sub GetZ(Z() As mvnaIQ, Zo As mvnaIQ) ' Z = -(S11+1) * Zo / (S11-1)

VB: Sub SetZ(Z() As mvnaIQ, Zo As mvnaIQ) ' S11 = (Z - Zo) / (Z + Zo)

SetZ() will convert the impedance values to I/Q values.

C#: virtual void GetSWR(ref System.Array SWR)

C#: virtual void GetFL(ref System.Array FL)

VB: Sub GetSWR(SWR() As Double) ' SWR = (1 + S11) / (1 - S11)

VB: Sub GetFL(FL() As Double) ' FL = 10 Log(1- S11^2)

FL is the Forward Loss: the power lost in forward direction due to impedance mismatch.

C#: virtual void AverageData(ref mvnaIQData Data, double Average)

VB: Sub AverageData(Data As mvnaIQData, ByVal Average As Double)

Calculates and stores the (running) average between the object and a new IQData object, with an
Average factor between 0 and 1. A factor of 0.1 gives a (long term) average over 10 samples.

http://www.megiq.com/

 VNA Aplication Programming Interface

© 2015 - 2020 MegiQ www.megiq.com - 49 -

6.18 Class mvnaIQ
The IQ class holds a single I/Q value. It provides some arithmetic.

C#: virtual double IVal { set; get; }

C#: virtual double QVal { set; get; }

VB: IVal As Double

VB: QVal As Double

C#: virtual mvnaIQ get_Value()

C#: virtual void set_Value(ref mvnaIQ value)

VB: Property Get Value() As mvnaIQ ' Returns a new, copied class

VB: Property Set Value(Val As mvnaIQ)

C#: virtual double Amp { get; }

C#: virtual double Phi { get; }

VB: Property Get Amp() As Double

VB: Property Get Phi() As Double

C#: virtual void AssignPolar(double Amp, double Phi)

C#: virtual void AssingPolarDB180(double Amp, double Phi)

VB: Sub AssignPolar(ByVal Amp As Double, ByVal Phi As Double)

VB: Sub AssingPolarDB180(ByVal Amp As Double, ByVal Phi As Double)

C#: virtual double AmpDB { get; }

C#: virtual double Phi180 { get; }

VB: Property Get AmpDB() As Double

VB: Property Get Phi180() As Double

C#: virtual mvnaIQ Zero { get; }

C#: virtual mvnaIQ One { get; }

C#: virtual mvnaIQ OneQ { get; }

C#: virtual mvnaIQ Two { get; }

VB: Property Get Zero() As mvnaIQ

VB: Property Get One() As mvnaIQ

VB: Property Get OneQ() As mvnaIQ

VB: Property Get Two() As mvnaIQ

C#: virtual mvnaIQ Neg { get; }

VB: Property Get Neg() As mvnaIQ

C#: virtual mvnaIQ Add(ref mvnaIQ V)

C#: virtual mvnaIQ Subtract(ref mvnaIQ V)

C#: virtual mvnaIQ Multiply(ref mvnaIQ V)

C#: virtual mvnaIQ Divide(ref mvnaIQ V)

VB: Function Add(V As mvnaIQ) As mvnaIQ

VB: Function Subtract(V As mvnaIQ) As mvnaIQ

VB: Function Multiply(V As mvnaIQ) As mvnaIQ

VB: Function Divide(V As mvnaIQ) As mvnaIQ

C#: virtual bool get_IsEqual(ref mvnaIQ Val)

VB: Property Get IsEqual(Val As mvnaIQ) As Boolean

http://www.megiq.com/

 VNA Aplication Programming Interface

© 2015 - 2020 MegiQ www.megiq.com - 50 -

6.19 Enum mvnaVNAStatus
mvnaVST_Disconnected = 0

mvnaVST_Initializing = 1 ' Connecting and initializing

mvnaVST_Idle = 2

mvnaVST_Calibrating = 3

mvnaVST_Sweeping = 4

6.20 Enum mvnaSweepType
mvnaSWT_Lin = 0

mvnaSWT_List = 2

6.21 Enum mvnaVNAPort
Bitmask:

mvnaVNP_None = 0

mvnaVNP_Port1 = 1

mvnaVNP_Port2 = 2

mvnaVNP_Port3 = 4

6.22 Enum mvnaVNADataOptions
Bit mask:

mvnaVDO_NONE = 0

mvnaVDO_CALIBRATION = 2

mvnaVDO_DATA = 4

6.23 Enum mvnaVNABiasControl
mvnaVBC_Off = 0

mvnaVBC_Ground = 1

mvnaVBC_On = 2

6.24 Enum mvnaWindowShowState
mvnaWSS_Hidden = 0

mvnaWSS_Minimized = 1

mvnaWSS_Normal = 2

mvnaWSS_Maximized = 3

6.25 Enum mvnaColor
 Bitmask:

mvnaCOL_None = 0

mvnaCOL_Red = 1

mvnaCOL_Green = 2

mvnaCOL_Blue = 4

mvnaCOL_All = 7

6.26 Enum mvnaLedState
mvnaLED_Off = 0

mvnaLED_On = 1

mvnaLED_Blink = 2

mvnaLED_BlinkFast = 3

http://www.megiq.com/

